Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions
نویسندگان
چکیده
Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin-paromomycin, ribostamycin and neamine-each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6'-polar group, drive subunit rotation in opposite directions. This suggests that their distinct actions hinge on the 6'-substituent and the drug's net positive charge. By solving the crystal structure of the paromomycin-ribosome complex, we observe specific contacts between the apical tip of H69 and the 6'-hydroxyl on paromomycin from within the drug's canonical h44-binding site. These results indicate that aminoglycoside actions must be framed in the context of bridge B2 and their regulation of subunit rotation.
منابع مشابه
Aminoglycoside activity observed on single pre-translocation ribosome complexes.
Aminoglycoside-class antibiotics bind directly to ribosomal RNA, imparting pleiotropic effects on ribosome function. Despite in-depth structural investigations of aminoglycoside-RNA oligonucleotide and aminoglycoside-ribosome interactions, mechanisms explaining the unique ribosome inhibition profiles of chemically similar aminoglycosides remain elusive. Here, using single-molecule fluorescence ...
متن کاملRegiospecificity of aminoglycoside phosphotransferase from Enterococci and Staphylococci (APH(3')-IIIa).
The broad-spectrum aminoglycoside phosphotransferase, APH(3')-IIIa, confers resistance to several aminoglycoside antibiotics in opportunistic pathogens of the genera Staphylococcus and Enterococcus. The profile of the drug resistance phenotype suggested that the enzyme would transfer a phosphate group from ATP to the 3'-hydroxyl of aminoglycosides. In addition, resistance to the 3'-deoxyaminogl...
متن کاملNovel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen.
Aminoglycoside 2″-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci. We describe a novel aminoglycoside 2″-phosphotransferase from the Gram-negative pathogen Campylobacter jejuni, which shares 78% amino acid sequence identity with the APH(2″)-Ia domain of the bifunctional aminoglycoside-modifying enzyme aminoglycoside (6') a...
متن کاملBasis for prokaryotic specificity of action of aminoglycoside antibiotics.
The aminoglycosides, a group of structurally related antibiotics, bind to rRNA in the small subunit of the prokaryotic ribosome. Most aminoglycosides are inactive or weakly active against eukaryotic ribosomes. A major difference in the binding site for these antibiotics between prokaryotic and eukaryotic ribosomes is the identity of the nucleotide at position 1408 (Escherichia coli numbering), ...
متن کاملFrequent use of aminoglycoside antibiotics in the treatment of serious Gram-negative infections
Frequent use of aminoglycoside antibiotics in the treatment of serious Gram-negative infections has been accompanied by the emergence of multiple drug-resistant strains of bacteria carrying R-factors. This has stimulated the study of resistance mechanisms and mechanisms for circumventing the drug inactivation caused by resistant bacteria. Thus, aminoglycoside antibiotics have been chemically mo...
متن کامل